
A Universal Robot Control System using Reinforcement

Learning with Limited Feedback

Joshua Gruenstein Michael Truell

May 9, 2016

Abstract

A universal robot control system was created that could be trained rather than
programmed in a matter of minutes. The system, nicknamed “Fido”, was designed to
be trained by non-experts, to run on any robot regardless of inputs and outputs, robot
kinematics, and processing capability, and to learn with limited human administered
feedback. To achieve this, Fido utilizes the Q-learning reinforcement learning algorithm
coupled with an artificial neural network and a wire-fitted interpolator, follows an intelli-
gent action selection policy, efficiently adjusts its model architecture, and trains itself on
samples of past experiences. Functionality was tested on a robotic simulator and three
robots of differing kinematics, sensors, and central processors. Fido successfully con-
verged on all given tasks in simulation and in hardware with an average of four times
less feedback than the industry standard trainable control system, while maintaining
impressively low latency even on a $5 computer.

1

1 Intro

The most prevalent control system used in mobile robotics is a procedurally programmed
expert system (Biggs & MacDonald, 2003). Such systems use linear conditional logic in order
to emulate a desired behavior. However, such systems are limited in numerous respects. First,
they can only perform the specific task for which they were programmed to accomplish; the
entire software must be rewritten in order to change the target task. Second, they rely on
a knowledge of the inputs and outputs to the robot (such as sensors and motor control) in
order to function. The purpose of Fido was to solve both of these problems and is a gneral
control system for any robot that can be trained on tasks using reinforcement learning.

We chose to approach this problem with artificial neural networks; function appropriators
modeled after nature with the capability to take in a large number of inputs to produce
an output. Neural networks are commonly used to solve tasks that are challenging using
traditional rule-based programming, making them perfect for our task. The control system
was named Fido for the name’s connotations to training an intelligent organism.

2 Background

The human brain is composed of billions of neurons, interconnected electrically excitable
cells that form the basis of intelligence. Each neuron has dendrites that receive electrical
signals from other neurons. If the sum of these electrical signals is greater than a certain
threshold value, the neuron fires, propagating a voltage down its axon and out of its synapses.
These synapses can be considered the output of the neuron and are themselves connected
to the dendrites of other neurons. The interconnections of these neurons form a massive
network, where a huge number of inputs are processed in parallel to a set of outputs. The
purpose of artificial neural networks is to simulate the mathematical properties of these
neurons in order to approximate complex functions.

2.1 Single Artificial Neuron

w1
x1

w2x2
w3

x3 w4

x4

Σ Output

Figure 1: Single Neuron Diagram

An artificial neuron is simply a mathematical model of a biological neuron, and therefore
its functionality is very similar. Each artificial neuron has multiple inputs. In addition, each
neuron has a weight for each input, a bias term, an activation function, and one output. The
output of one neuron becomes the input of other connected neurons. The output of a neuron
is expressed mathematically for n inputs x and weights w, a bias term b, and activation
function O(x):

2

activation =
n∑

i=0

xiwi + b

output = O(activation) .

A weight is a positive or negative number that governs the impact of of its respective
input on the neuron’s single output. The activation function transforms the output of the
neural network. Common activation functions include a sigmoid curve, a hyperbolic tangent,
a binary step function, and a rectifier function. Fido uses the sigmoid activation function
since it is gradient, has a fixed range, and is easily differentiable. The bias term is a number
added to the summation of weights and inputs, allowing us to make affine transformations
on the domain of the activation function.

1

activation

output
f(x) = 1

1+e−a/p

Figure 2: Sigmoid Activation Function Graph

2.2 Feed-forward Neural Network

Fido utilizes a feed-forward neural network, a collection of neurons organized into layers, as
a function appropriator in its machine learning algorithm. In a feed-forward neural network,
the output of each neuron is the input of each neuron in the next layer. In this way, the
original inputs of the neural network are “fed forward” layer by layer, starting from the first
layer (the input layer), passing through any number of middle layers (hidden layers), and
ending with the last layer (the output layer). The outputs of the neurons in the output layer
are the outputs of the whole network.

2.3 Backpropagation

Supervised learning is the modification of the weights of a neural network’s neurons in order
to reach a specific output from a specific set of inputs. One such method of adjusting neural
networks weights is called back propagation (Werbos, 1974).

Neural networks learning through back propagation are trained through example. Ex-
ample inputs (known as training sets) are linked to a particular target output, forming a
training pair. The first step of training is to pass in an arbitrary training set to a neural

3

Input 1

Input 2

Input 3

Input 4

Output

Hidden
layer

Input
layer

Output
layer

Figure 3: A Feed-forward Neural Network

WAB

W
AC

OutputB

OutputC

A B

C

Figure 4: Single Branch in a Back Propagation Neural Network

network with randomly generated weights. The error δ for an output neuron is defined as
the difference between the actual output and the target output for that training set. As
an example we will use the single connection described in Figure 4. The neural network in
this figure has only an input layer consisting of Neuron A and an output layer consisting of
Neurons A and B. WAB and WAC are the weights between the neurons. We first determine
the Neuron B error δB as TargetB − OutputB. Next we modify weight WAB as follows,
defining W+

AB as the newly trained weight:

W+
AB = WAB + (δBOutputA) . (1)

The same approach could be taken for Neuron C. However, this method cannot calculate
an improved weight for hidden layer neurons such as Neuron A, as there is no predefined
target. Therefore we must calculate the error of A indirectly by back propagating from the
two output layer neurons, for which the error is already known:

δA = WABδB +WACδC . (2)

Once the error for Neuron A is obtained, its trained weights can be calculated in the
same fashion as done for Neuron B. This pattern can be repeated throughout a larger neural
network in order to converge upon the network’s target output.

4

2.4 Q-Learning

Fido is a reinforcement learning system. Reinforcement learning systems seek to find the
optimal action to be undertaken for a given state through trial and error. In the context of
Fido, an action could be the playing of a note or driving straight forwards, while the state
could be the amount of light detected by the robot or how near the robot is to another object.
Once an action is performed, a reward and a new state are given back to the reinforcement
learning algorithm. As actions are performed over time, the reinforcement learning algorithm
sharpens its ability to receive reward.

Q-Learning (Watkins, 1989) is a popular reinforcement learning algorithm that works by
learning an action-value function Q that takes a state-action pair as an input and outputs
the expected utility value of performing that action in that state. This utility value is know
as the Q-value. The Q-value is a combination of immediate reward and expected future
reward. Every learning iteration the Q-value of an state-action pair is updated as such:

Q(s, a) := Q(s, a)(1− α) + α(R+ γmaxQ(st+1, a)) , (3)

where a is the action carried out, s is the initial state, R is the reward received, and st+1 is
the new state. α is the learning rate of the algorithm. The learning rate determines the rate
of convergence by diminishing or amplifying the changes made to the Q-value each learning
iteration. γ is the devaluation factor, which determines the weight given to future rewards.
A devaluation factor approaching γ = 0 will force the algorithm to only value immediate
reward, while a devaluation factor approaching γ = 1 will make it focused on high long term
reward.

A table was originally used to model the Q function, storing state-action pairs and each
pair’s respective Q-value. However, in recent years, neural networks have been increasingly
used to model the Q-function, since they can generalize between similar states, and so,
converge in less time than a table based implementation. For the purposes of this paper, the
”industry standard” is discrete-action Q-learning coupled with feed-forward neural networks.

3 Learning

3.1 Wire-Fitted Q-Learning

The Q-Learning algorithm had to be immediately modified to be able to work in continuous
state-action spaces for it to be suitable for Fido. Conventional Q-Learning is discrete. No
relation is made between states or actions, and every action for each state must be performed
individually in a noisy feedback system to determine its Q-value. However, Fido will work in
a large, continuous state-action spaces where relations made between similar (state-action,Q-
value) pairs can drastically reduce the number of learning iterations needed for convergence.
An example of a task that would benefit from continuity is teaching Fido to adjust the speed
of its motors based on the intensity of light that the robot detects. There is an obvious
gradient relation between the (state-action, Q-value) pairs in this task and with a limited
number of Q-values known, it is possible to correctly model Q.

To accommodate continuous action-spaces, we coupled a wire-fitted moving least squares
interpolator with a feed-forward neural network as described in (Gaskett, Wettergreen, &

5

Zelinsky, 1999).
Feed-forward neural networks can generalize between states in Q-Learning problems

with discrete actions as described in (Rummery, 1995). To extend this implementation to
a continuous action space, our feed-forward neural network outputs discrete “wires” when
given a state. Each wire consists of an action and its respective Q-value. These wires may
be interpolated to model Q, allowing us to get the Q-value of any action performed in a
state given as an input to the network. The interpolator used in Fido is a wire-fitted moving
least squares interpolator used in the context of a memory-based learning system(Baird &
Klopf, 1993).

The wire-fitting function calculates Q-value of an action â for a state s given a set of n
wires made up of actions a and their respective Q-value q as such:

Q(a, s) =

∑n
i=0

qi

||â− ai||2 + c(qmax − qi) + k∑n
i=0

1

||â− ai||2 + c(qmax − qi) + k

, (4)

where qmax is the greatest Q-value among the set of Q-values q, and k is a small value that
avoids division by zero. c is the smoothing factor. The greater the smoothing factor, the
smoother the interpolated function.

Figure 5 is an example of interpolation on a set of wires. The graph shows the value of
one-dimensional actions plotted against their respectiveQ-values. The wire-fitting function
has few properties that make it especially suited for Fido.

Figure 5: Moving Least Squares Interpolator (adapted from Gaskett, Wettergreen, &
Zelinsky, 1999)

Every update to the Q-value requires that qmax is computed and the action that produces
qmax is needed for common action selection policies. As proved in (Baird & Klopf, 1993), the
wire with the greatest Q-value is the interpolation point with the greatest Q-value, therefore
qmax is the maximum Q-value out of the set of wires given to the wire-fitting function. This

6

makes it extremely computationally cheap to compute Q-value, allowing Fido’s latency to
stay minimal.

The wire-fitting function is derivable. This allows us to update our wires, and therefore
our model of Q, using gradient descent. Gradient descent is an optimization algorithm that
looks to find the local minimum of a function by modifying each of its parameters, one by
one. The update function for a parameter is calculated as such:

a = a− γ∆F (a) , (5)

where a is the parameter to be updated, γ is the learning rate, and ∆F (a) is the partial
derivative of the function to be minimized F with respect to a. In the case of Fido, once
the reward and new state for an action-state pair is received and an updated Q-value q̂ is
calculated using Equation 3, we are trying to minimize the wire-fitting function’s error at
predicting q̂ when given the wires for Fido’s previous state. This error can be calculated as:

(q̂ − q)2 , (6)

where q is the old Q-value. Using Equation 6 as our function to be minimized and the
partial derivative of the wire-fitting function with respect to each action vector and each
q-value, we may compute the partial derivatives of our cost function. Using these, new wires
may be calculated for Fido’s previous state using gradient descent.

Fido’s neural network may be trained is trained to output these wires using the Adadelta
training algorithm (Zeiler, 2012). Adadelta is a variant of backpropgation that dynamically
adjusts its learning rate to an optimum value, allowing for lower latency. This increases the
universality of Fido, since backpropagation’s learning rate is task specific.

3.2 Uncertainty Value

Fido continuously calculates the ”uncertainty” u of its system. Such a value should lower as
Fido learns a task and rise if Fido’s task changes. This value is useful in adjusting a number
hyperparameters that are detailed in the next few sections, such as the exploratory level of
the system. After receiving reward and updating its wires using stochastic gradient descent,
Fido calculates its uncertainty value as the means squared error between its original set of
wires and its newly updated set of wires. In this way, Fido uncertainty value is proportional
to the disparity between the current predictions of its model and new information presented
to Fido during the current learning iteration.

3.3 Action Selection

Q-learn requires that actions are selected to be performed. There are a number of approaches
to choosing this action, and each has a large affect on the behavior of the learning implemen-
tation. The most common approach is to simply pick the action with the best Q-value for the
current state. However this strategy stifles exploration of the state-action space, increasing

the time of convergence on a task, hurting the retrain-ability of the model, and giving a
bias towards an actor’s starting policy, which is random. This problem is compounded in
the case of Fido due to the large state and action spaces that Fido must explore. Another
common method of action selection is to choose each action randomly for a set number of

7

learning iterations, and then to switch to choosing the action with the highest Q-value. This
plan improves upon the first by allowing for a period of exploration, but is not suited for
Fido. During its lifetime, Fido must have the ability to learn new tasks and be retrained by
the operator providing feedback, and so, must continuously explore its state space.

Fido selects actions probabilistically using a Boltzmann or soft-max distribution of
probability. The likelihood that an action â will be chosen from a set of n actions a for a
state s is given as:

p(â) =
e

Q(s,â)
T∑n

i=0 e
Q(s,ai)

T

. (7)

T is the temperature, or exploration level. As T approaches infinity, a random action is
chosen. As T tends toward 0, the best action is chosen. Fido keeps T at a constant value
around T ≈ 0.15 throughout its lifetime to encourage occasional, continued exploration.

T is set proportional to Fido’s uncertainty value, so that Fido rapidly explores when it is
first initialized or is being retrained. This allows Fido to converge on tasks in fewer learning
iterations than if T were set as a constant. As Fido learns a task, T will approach 0. This

means that Fido will accurately perform a task when sure of its actions, increasing Fido’s
average reward over other systems.

3.4 Experience Replay

As a reinforcement learning system proceeded throughout a problem, the effect of former
learning iterations decreases with time as the system updates the parameters of its model to
lower its error on new learning iterations. This is wasteful since some iterations will present
the system with critical information, such as tagging an unlikely action with high reward.

Fido stores each learning iteration’s initial and final states, action, and reward, collec-
tively known as an ‘experience.” Past control systems have periodically fed these experiences
through a reinforcement learning model to lower convergence time on in non-chaning environ-
ments (Adam, Buşoniu, & Babuška, 2012). We extend this method to changing environments.
Every learning iteration, Fido trains its model on a few past experiences, which are sampled
probabilistically according to their age. Weight is given to newer experiences. The number
of experiences sampled is proportional to the inverse of Fido’s uncertainty value, as past
histories will become invalid if the parameters of a problem change.

3.5 Dynamic Model Architecture

The optimal size of a neural network is directly related to the complexity of the function that
such a neural network has to model. This requires that Fido dynamically size its network,
since a constant neural network architecture would never be able to converge on some tasks.
Likewise, Fido must dynamically optimize the number of wires outputted by its neural
network, since more complicated tasks require a larger number wires to effectively model
their action-reward function.

The most accurate method of model architecture optimization would be a brute force
search. When using such a method, all the possible permutations of Fido’s model within
a range would be generated. Each possible model would be trained on a sample of Fido’s

8

experiences for a finite number of epochs. The model with the lowest error on the sample of
experiences would be selected as Fido’s current model.

However, such a method is extraordinarily latent and since Fido needs to be able to run
on low power systems, is infeasible. Stochastic gradient descent would be a natural choice
for such a search, but the relationship between Fido’s error and its model architecture is
not easily derivable.

Instead, Fido performs a simultaneous perturbation stochastic approximation (Spall,
1992) to adjust its model architecture. SPSA is gradient descent method designed for discrete
systems that requires only two samples of the cost function to compute its derivative. Its
update function is similar to 6 and is given as:

un+1 = un − anĝn(un) (8)

where n is the current epoch; u is our model parameters, the number of wires and
neurons; a is a positive sequence of numbers that approach 0 as n approaches 0; and ĝn is
an estimation of the derivative of the cost function. SPSA defines ĝn as:

ĝn(un) =
J(un + cn∆n)− J(un − cn∆n)

2cn(∆n)i
. (9)

where ∆n is a random perturbation vector and J is the cost function. For Fido, J is the
error of the the model mn that is defined by un on a sample of experiences after a period of
training.

To optimize the sampling of J , Fido creates mn’s neural network by adding and subtract-
ing the Fido’s current network since Fido’s model at any given time will have a relatively
low J . Fido subtracts ”unimportant” neurons using a pruning algorithm (Reed, 1993) so as
to decrease J(mn). Our pruning algorithm estimates the effect of pruning weight wij on J .
This estimate using values recorded during backpropagation or Adadelta and is given as:

B∑
b=0

δE

δwij
∆wij(b)

wf
ij

wf
ij − wi

ij

(10)

Neurons whose weights have the smallest impact on J should be pruned.

4 Implementation

Fido was implemented in the C++ programming language with minimal use of the standard
library. This was to enable cross-platform functionality, lightweight and speedy performance,
and the ability to run on microcontrollers if necessary. In order to test Fido both a simulation
environment and three hardware implementations were constructed and written driver suites
for interaction with inputs and outputs.

4.1 Simulation

An asynchronous simulator was created using C++ and the SFML graphics library in order
to efficiently test Fido’s performance on different types of robots. Multiple inputs were
modeled for simulation with outlets for control both by a human operator using sliders and

9

by programmed handlers using a bridge class. Sensors included a microphone, light sensor,
infrared light sensor, inertial measurement unit, and three axes of radio receivers allowing
measurement from a radio beacon. Multiple tasks were trained using both operator input
and autonomous “taskmaster” programs to regulate positive and negative feedback.

Figure 6: Screenshot of the Fido Simulator Graphical User Interface

Fido’s outputs were chosen similarly. A buzzer of varying tone and frequency can play
sounds and a multicolor LED can be lit to any red-green-blue color combination. Two motors
allow movement using one of two kinematic configurations: differential drive similar to that
of a tank, or holonomic control for each axis of movement. Appropriate kinematics for each
model including acceleration and friction were implemented with help from (Dudek & Jenkin,
2000).

The black rectangle in the upper right corner of the simulator is the robot, having been
moved as part of training. The red dot near the rectangle is a graphical representation of a
radio beacon. As adjusting sliders to represent the location of a radio beacon relative to the
robot would be impractical, we decided to implement a beacon that could be placed and
dragged by right clicking on the simulator. Simulated sensor readings of beacon strength
on two axes are gathered using an inverse square law, as applies to radio waves in general.
These readings are then displayed in the sliders and can be manually altered as well. The
radio beacon can be removed by a human operator by pressing the “p” key in the simulator
environment. This was especially helpful in the task of training Fido to follow a radio beacon.

10

4.2 Hardware Implementations

Three hardware implementations were next constructed to test Fido’s real world trainability,
universality, and applicability. In order to facilitate this, the three robots were designed
to have vastly different kinematics and functionality. The robots, nicknamed “Thing One,”
“Thing Two,” and “Thing Three,” all ran on embedded GNU/Linux systems and were trained
via a cross-platform mobile application over Wi-Fi.

4.2.1 Thing One

Figure 7: Fido Thing One with Head-Cap Removed

The first hardware implementation constructed, nicknamed “Thing One,” consisted of an
Intel Edison GNU/Linux Single Board Computer, a two-wheeled differential drive system,
and a 3D-printed case. The implementation was given an ambient light sensor, an inertial
measurement unit, and a microphone as inputs, with its two motors as outputs. A differential
drive system was chosen due to its standardization in the field, while the Intel Edison was
chosen due to its low power consumption and integrated wireless networking capabilites.

4.2.2 Thing Two

The second hardware implementation to be constructed was named “Thing Two,” and
utlized a three 90◦ Swedish wheel holonomic drive system. This more complex drive system
challenged the Fido control system with the advanced kinematics neccesary to manipulate
the system in every possible degree of freedom. The robot was powered by the $5 Raspberry
Pi Zero, demonstrating that Fido could be run on lower cost and power hardware. The body
was cut from 1/8′′ polycarbonate and bolted together using hex standoffs to create a tiered
structure for mounting various sensors and electronics. The inputs to the system were a ZX
gesture sensor, a line following infrared array, an inertial measurement unit and an ambient
RGB color sensor. The outputs from the system were its three motors, a piezoelectric buzzer,
and an RGB light-emitting diode.

11

Figure 8: Fido Thing Two

Figure 9: Fido Thing Three

4.2.3 Thing Three

The third and final hardware implementation constructed was a four axis robotic arm
nicknamed “Thing Three.” A departure from the wheeled mobile robots previously detailled,
Thing Three was created to demonstrate Fido’s extensive universality and applicability in
practical settings. The robot’s chassis was 3D printed out of translucent PLA plastic, with a
hollow interior for wire and LED strip routing. The LED strip was used to indicate reward
administration during training. The arm was actuated by five Dynamixel AX-12A servo
motors, and controlled by a Raspberry Pi Zero. The inputs to the system were two MaxSonar
ultrasonic sensors and the arm’s joints’ current positions, while its outputs were its servo
motors and LED strip.

12

Figure 10: Screenshot of the Training App during Robot Training

4.3 Training App

Next, a crossplatform mobile application was created to assist training Fido’s hardware
implementations. The application allowed an operator to connect to a hardware implemen-
tation over Wi-Fi using TCP sockets, administer reward, and run trained models. Gradient
reward could be administered to the Fido control system from -1 to 1, with positive feedback
shown in green and negative feedback shown in red. The application was developed using
web technologies through the Ionic Framework.

5 Results

5.1 Results in Simulation

To test Fido’s effectiveness at learning with limited feedback, Fido was first trained on
a number of different tasks through our simulator using reward values delegated through
software. Data was collected regarding Fido’s latency and number of learning iterations
needed for convergence.

Fido’s first and simplest task, dubbed “Flash,” was to set the brightness value of an LED
to a value proportional to the amount of light that Fido sensed. Each learning iteration,
Fido’s neural network was given the intensity of visible light that Fido detected and was
asked for the brightness value of Fido’s LED. Fido was then given a reward value equal to
1− |b− v| where b was the brightness value of Fido’s LED ranging from 0 to 1 and v was
the intensity of visible light that Fido detected ranging from 0 to 1.

“Float,” Fido’s second task, challenged our learning implementation to direct a robot
to point. Each time it was told to select an action, Fido specified the robot’s vertical and
horizontal velocity between +30 and -30 pixels. This emulates a holonomic drive systems,
where motor outputs directly correlate to movement on the x and y axes. At the start of
each trial, Fido and the point were placed randomly on a boundless plane within 768 pixels
of one another. Fido was fed the ratio of its x displacement to its y displacement from its

target point as the state. Reward was calculated as the difference between Fido’s distance

13

away from the target point before performing the action and Fido’s distance from the target
point after performing the action. Fido completed each trial when it was within 60 pixels of
the point.

Fido’s next task, nicknamed “Drive,” required that it direct a robot to point by controlling
the motors of a differential drive system. At the start of each trial, Fido and the point were
placed randomly on a boundless plane within 768 pixels of one another. Fido was fed the
ratio of its x displacement to its y displacement from its target point as well as its rotation.
Reward was calculated as the difference between Fido’s distance away from the target point
before performing the action and Fido’s distance from the target point after performing the
action. Fido completed each trial when it was within 60 pixels of the point.

Fido’s fourth challenge, called “Line Follow,” was to perform the classic robotic task
of line following by controlling the motors of the simulator’s differential drive system. At
the start of each trial, Fido was placed on a line with a random rotation. Fido was fed the
ratio of its x displacement to its y displacement from the closest point on the line as well
as its rotation. Reward was calculated as the difference between Fido’s distance away from
the line before performing the action and Fido’s distance from the line after performing
the action. Fido completed each trial when it had stayed within 60 pixels of the line for 10
consecutive actions.

Finally, in “Noisy Line Follow,” Fido was trained to line follow in the exact same matter
as in “Line Follow” with the exception of being fed one additional, completely random input.

5.1.1 Simulation Findings

Each task was run 400 times to gather the data show in Table 1. The learning iterations
values shown in the above data table were the medians of the data collected. The median is
shown instead of the mean to discount a few large outliers that were present in data. The
time data shown above is the mean of the data collected.

Task Learning Iterations Action Selection (ms) Training Time (ms)

Flash 6 0. 28
Float 14 1 63
Drive 16 1 94
Line Follow 10 0. 90.
Noisy Line Follow 12 0. 321.

Table 1: Number of Learning Iterations, Action Selection Time, and Training Time Per
Iteration for Fido Simulation Tasks

The data collected through the simulator demonstrates the prowess of the Fido control
system with computer-delegated reward in multiple configurations and situations. Fido was
able to master both a holonomic and differential-drive motor control system (the “Float”
and “Drive” tasks), proving its hardware agnostic capabilities. All tasks showed low numbers
of reward iterations and low latency, allowing Fido to learn quickly and efficiently. The task
that was most difficult for Fido, “Drive,” took a median of 16 reward iterations, well within
the patience of a human. In addition, Fido was able to effectively filter out noise presented

14

to it in the “Noisy Line Follow” task with only a two reward iteration increase. T his is
in contrast with most other machine learning algorithms which require extensive feature
detection as a prerequisite for convergence.

5.1.2 Comparison to Industry Standard of Q-Learning with a Neural Network

Fido’s performance in completing the above simulator tasks was tested against the industry
standard of discrete Q-Learning using a neural network. On average, Fido required over
four times fewer learning iterations than discrete Q-Learning for a given task.

Task Fido Learning Iterations Discrete Learning Iterations

Flash 3 16
Float to Point 14 56
Drive to Point 16 69
Line Following 10 42

Table 2: Fido Results Compared to Discrete Q-Learning

5.2 Results in Hardware

Data was next collected from Fido’s hardware implementations to gage performance with
human given feedback in real world situations. Reward was administered through the mobile
application previously discussed. 25 trials were done for each task to gather the data shown
in the below tables. As with the simulation, reward iterations values shown are the medians
of the data collected while time data shown is the mean of the data collected.

5.2.1 Thing One Results

The first task to be given to Thing One was to stay still. As one would expect, Fido’s
sole responsibility for this task was not to move. Fido was administered positive reward
when it didn’t move, and negative reward when it did. Next, Thing One was tasked with
driving to a point. At the start of each trial, Fido and the point were placed randomly on a
smooth, hardwood surface within 0.75 meters of one another. Fido was told the ratio of its x
displacement to its y displacement from its target point as well as its rotation. Every fourth
action that Fido made was chosen as a learning iteration, and Fido was given a reward
value corresponding to its last action. This reward value was chosen by the tester based on
whether Fido moved toward the point or not. Fido completed each trial when it was within
10 cm of the point.

Performance was slower on the hardware implementation than in simulation for the
drive to point task due to the limited computation power of the Intel Edison compute model
compared to modern desktop computers. However, the results still demonstrated Fido’s real
world applicability through its ability to perform outside of a simulation environment.

15

Task Learning Iterations Action Selection (ms) Training Time (ms)

Stay Still 3 1 80
Drive to Point 18 4 307

Table 3: Number of Learning Iterations, Action Selection Time, and Training Time Per
Iteration for Thing One Tasks

5.2.2 Thing Two Results

The second hardware implementation constructed, nicknamed “Thing Two,” was tasked
to master its complex holonomic drive system and numerous sensors to master tasks with
limited preprocessing. The first task administered asked Fido to drive straight using its three
90◦ Swedish wheels, requiring Fido to determinethe correct ratio of motor values outputted.
Fido was administered reward somewhat subjectively by a human operator, being given
positive reward when it drove in a less lopsided fashion. Next, Fido was tasked with following
a line. Fido’s line sensor reported whether it was to the left or right of a line. A course
was laid out using black electrical tape for Thing Two to learn on. Training was performed
by placing Thing Two to the left or right of a line. If the robot moved towards the line, it
was administered positive feedback. If the robot moved away from the line, it would receive
negative feedback. Fido was also trained to follow a ball using its ZX sensor, which reported
the location of an object in front of it in the horizontal and vertical dimensions. Similiarly,
Fido was administered positive reward if it drove towards the ball, and negative reward if it
drove away. Finally, Fido’s retrainability and applicability was tested in a task that involved
loading a pretrained line following model, unplugging a motor, and retraining the robot to
compensate.

Task Learning Iterations Action Selection (ms) Training Time (ms)

Drive Straight 13 2 215
Line Following 15 21 398
Fetch 8 1 246
Limping Line Following 6 20 464

Table 4: Number of Learning Iterations, Action Selection Time, and Training Time Per
Iteration for Thing Two Tasks

5.2.3 Thing Three Results

The last hardware implementation constructed was a four axis robotic arm, nicknamed
“Thing Three.” Thing Three was first tasked with drawing a square. As output, Fido could
choose from a set of “waypoints,” predefined sets of angle positions representing important
positions in the operating enviroment. As input, Fido was given its current waypoint. If
Fido drew a correct line in the sequence of drawing a square, it was given positive reward.
Next, Thing Three was trained to hit a ball with a paddle (or “play ping pong”) using its
two ultrasonic sensors to sense ball position. Fido was able to adjust its joint rotations as

16

outputs to hit the ball. In training, positive feedback was administered if Thing Three hit
the paddle towards the ball, while negative feedback was given if Thing Three moved in the
opposite direction.

Task Learning Iterations Action Selection (ms) Training Time (ms)

Draw Square 5 5 40
Ping Pong 8 3 379

Table 5: Number of Learning Iterations, Action Selection Time, and Training Time Per
Iteration for Thing Three Tasks

6 Conclusion

Fido successfully met our objectives of trainablility, universality, and performance. Fido
was trainable and re-trainable on a wide range of unique tasks by non-expert humans. The
system was fully universal, achieving similar performance on a simulator and three distinct
robots. Fido also converged on all of its tasks with an average of four times fewer learning
iterations than the industry standard trainable control system, discrete Q-learning with
neural networks. The control system was also able to effectively cope with noisy sensor
values and human-given reward, while maintaining such little latency as to allow it to be
run on a $5 dollar computer. The increase in performance and universality presented by
Fido makes it a viable alternative over traditional procedurally programmed systems.

17

References

Adam, S., Buşoniu, L., & Babuška, R. (2012). Experience replay for real-time reinforcement
learning control. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 42 (2), 201–212.

Baird, L. C., & Klopf, A. H. (1993). Reinforcement learning with high-dimensional, con-
tinuous actions. Wright Laboratory, Wright-Patterson Air Force Base, Tech. Rep.
WL-TR-93-1147 .

Biggs, G., & MacDonald, B. (2003). A survey of robot programming systems. , 1-3.
Dini, S., & Serrano, M. (2012). Combining q-learning with artificial neural networks in an

adaptive light seeking robot.
Dudek, G., & Jenkin, M. (2000). Computational principles of mobile robotics. New York,

NY, USA: Cambridge University Press.
Gaskett, C., Wettergreen, D., & Zelinsky, A. (1999). Q-learning in continuous state and

action spaces. , 417-428.
Kim, D. S., & Papagelis, A. J. (n.d.). Multi-layer perceptron: Artificial neural networks.

http://www.cse.unsw.edu.au/ cs9417ml/MLP2/.
MacLeod, C. (2010). An introduction to practical neural networks and genetic algorithms

for engineers and scientists (Tech. Rep.). Robert Gordon University.
Reed, R. (1993). Pruning algorithms-a survey. Neural Networks, IEEE Transactions on,

4 (5), 740–747.
Rummery, G. A. (1995). Problem solving with reinforcement learning (Unpublished doctoral

dissertation). University of Cambridge Ph. D. dissertation.
Spall, J. C. (1992). Multivariate stochastic approximation using a simultaneous perturbation

gradient approximation. Automatic Control, IEEE Transactions on, 37 (3), 332–341.
Watkins, C. J. C. H. (1989). Learning from delayed rewards (Unpublished doctoral disser-

tation). University of Cambridge England.
Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral

sciences.
Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701 .

18

7 Appendix: Open Source

All of the research and source code for the Fido project can be found hosted on Github under
the MIT Open Source License. The project contains multiple repositories. “Fido” contains
the control system and various additional machine learning functionality, structured as a
library to incentivize usage of the system. Other repositories include “Hardware,” which
contains the design files and drivers for the hardware implementations, “Research,” which
contains this paper and our poster, and “Training App,” which contains our crossplatform
mobile training app. The Github organization where all of these repositories are hosted can
be found at the following link:

https://github.com/FidoProject

19

